X^2/3=1-x^2

Simple and best practice solution for X^2/3=1-x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2/3=1-x^2 equation:



X^2/3=1-X^2
We move all terms to the left:
X^2/3-(1-X^2)=0
We get rid of parentheses
X^2/3+X^2-1=0
We multiply all the terms by the denominator
X^2+X^2*3-1*3=0
We add all the numbers together, and all the variables
X^2+X^2*3-3=0
Wy multiply elements
X^2+3X^2-3=0
We add all the numbers together, and all the variables
4X^2-3=0
a = 4; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·4·(-3)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*4}=\frac{0-4\sqrt{3}}{8} =-\frac{4\sqrt{3}}{8} =-\frac{\sqrt{3}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*4}=\frac{0+4\sqrt{3}}{8} =\frac{4\sqrt{3}}{8} =\frac{\sqrt{3}}{2} $

See similar equations:

| 10×-6y=22 | | 2(k-5)/4=4(k=2)/5 | | Y+4x=9;x=-2,0,4 | | 2-3x=(4/5) | | 7(5-n)+3n=32-7n | | 6y+2y=30 | | x2+(13)2=(39)2 | | 8+4x=-3(3x+6) | | 6-5a=-4(4a-7) | | Y+4x=11;x=-2,0,4 | | 5x^2=7-4x | | a=3.14(865,000^2) | | 10-2(4w-1)=20 | | -6(-5-6x)=174 | | 28-n=-2(n-7)+8n | | -36+x=-8x+2(3x-6) | | (x+3)/4=1-(x+2)/7 | | e=3*36 | | 6-3(3w-1)=90 | | x+3/4=1-x+2/7 | | 30=3u+2u | | 4b(7b-4)(4b-1)=0 | | 2-3x=4/5 | | 2-3x=0,8 | | 8(r+1)-7r=-20-3r | | -8=8+y/4 | | 3u+u=64 | | 0.06y+0.14(3000-1y)=0.42 | | x+5x+1=19 | | 3(x-5)+2x=5(x+6)-45 | | 4j(+5j+15=5j7j | | F(2)=5x^2-4x |

Equations solver categories